资源类型

期刊论文 291

会议视频 9

年份

2023 38

2022 33

2021 27

2020 24

2019 20

2018 24

2017 12

2016 9

2015 9

2014 4

2013 12

2012 7

2011 12

2010 4

2009 10

2008 13

2007 13

2006 4

2005 5

2004 2

展开 ︾

关键词

冶金 3

增材制造 3

材料设计 3

碳中和 3

颠覆性技术 3

三相界面 2

新材料 2

智能制造 2

机器学习 2

材料 2

&gamma 1

2019全球工程前沿 1

2035 1

3D 打印 1

4D打印 1

N-糖组 1

CCK-8 实验 1

FRP 聚合物 1

MCDB 1

展开 ︾

检索范围:

排序: 展示方式:

Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro–thermo–magnetic

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 584-605 doi: 10.1007/s11709-023-0916-7

摘要: Herein, a two-node beam element enriched based on the Lagrange and Hermite interpolation function is proposed to solve the governing equation of a functionally graded porous (FGP) curved nanobeam on an elastic foundation in a hygro–thermo–magnetic environment. The material properties of curved nanobeams change continuously along the thickness via a power-law distribution, and the porosity distributions are described by an uneven porosity distribution. The effects of magnetic fields, temperature, and moisture on the curved nanobeam are assumed to result in axial loads and not affect the mechanical properties of the material. The equilibrium equations of the curved nanobeam are derived using Hamilton’s principle based on various beam theories, including the classical theory, first-order shear deformation theory, and higher-order shear deformation theory, and the nonlocal elasticity theory. The accuracy of the proposed method is verified by comparing the results obtained with those of previous reliable studies. Additionally, the effects of different parameters on the free vibration behavior of the FGP curved nanobeams are investigated comprehensively.

关键词: functionally graded porous material     curved nanobeam     hygro–thermo–magnetic     enriched finite element method    

Static and dynamic analysis of functionally graded fluid-infiltrated porous skew and elliptical nanoplates

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 477-502 doi: 10.1007/s11709-023-0918-5

摘要: The analysis of static bending and free and forced vibration responses of functionally graded fluid-infiltrated porous (FGFP) skew and elliptical nanoplates placed on Pasternak’s two-parameter elastic foundation is performed for the first time using isogeometric analysis (IGA) based on the non-uniform rational B-splines (NURBSs) basis function. Three types of porosity distributions affect the mechanical characteristics of materials: symmetric distribution, upper asymmetric distribution, and lower asymmetric distribution. The stress–strain relationship for Biot porous materials was determined using the elastic theory. The general equations of motion of the nanoplates were established using the four-unknown shear deformation plate theory in conjunction with the nonlocal elastic theory and Hamilton’s principle. A computer program that uses IGA to determine the static bending and free and forced vibration of a nanoplate was developed on MATLAB software platform. The accuracy of the computational program was validated via numerical comparison with confidence assertions. This set of programs presents the influence of the following parameters on the static bending and free and forced vibrations of nanoplates: porosity distribution law, porosity coefficient and geometrical parameters, elastic foundation, deviation angle, nonlocal coefficient, different boundary conditions, and Skempton coefficients. The numerical findings demonstrated the uniqueness of the FGFP plate’s behavior when the porosities are saturated with liquid compared with the case without liquid. The findings of this study have significant implications for engineers involved in the design and fabrication of the aforementioned type of structures. Furthermore, this can form the basis for future research on the mechanical responses of the structures.

关键词: static bending     free and forced vibrations     nonlocal theory     isogeometric analysis     fluid-infiltrated porous nanoplates    

A novel finite element formulation for static bending analysis of functionally graded porous sandwich

Van Chinh NGUYEN; Trung Thanh TRAN; Trung NGUYEN-THOI; Quoc-Hoa PHAM

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1599-1620 doi: 10.1007/s11709-022-0891-4

摘要: This article aims to propose a finite element formulation based on Quasi-3D theory for the static bending analysis of functionally graded porous (FGP) sandwich plates. The FGP sandwich plates consist of three layers including the bottom skin of homogeneous metal, the top skin of fully ceramic and the FGP core layer with uneven porosity distribution. A quadrilateral (Q4) element with nine degrees of freedom (DOFs) per node is derived and employed in analyzing the static bending response of the plate under uniform and/or sinusoidally distributed loads. The accuracy of the present finite element formulation is verified by comparing the obtained numerical results with the published results in the literature. Then, some numerical examples are performed to examine the effects of the parameters including power-law index k and porosity coefficient ξ on the static bending response of rectangular FGP sandwich plates. In addition, a problem with a complicated L-shape model is conducted to illustrate the superiority of the proposed finite element method.

关键词: sandwich plates     functionally graded porous     static bending     Quasi-3D theory     Q4 element    

Manufacturing technique and performance of functionally graded concrete segment in shield tunnel

Baoguo MA, Dinghua ZOU, Li XU

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 101-104 doi: 10.1007/s11709-009-0011-8

摘要: The quality of segment is very important to the service life of shield tunnel. Concerning the complex engineering environment of the Wuhan Yangtze River Shield Tunnel, the principle of functionally graded materials was introduced to design and produce the functionally graded concrete segment (FGCS). Its key manufacturing technique was proposed and its performance was tested.

关键词: shield tunnel     functionally graded concrete segment (FGCS)     manufacturing technology     performance    

A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1453-1479 doi: 10.1007/s11709-021-0767-z

摘要: This paper proposes a new Deep Feed-forward Neural Network (DFNN) approach for damage detection in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. In the proposed approach, the DFNN model is developed based on a data set containing 20 000 samples of damage scenarios, obtained via finite element (FE) simulation, of the FG-CNTRC plates. The elemental modal kinetic energy (MKE) values, calculated from natural frequencies and translational nodal displacements of the structures, are utilized as input of the DFNN model while the damage locations and corresponding severities are considered as output. The state-of-the art Exponential Linear Units (ELU) activation function and the Adamax algorithm are employed to train the DFNN model. Additionally, in order to enhance the performance of the DFNN model, the mini-batch and early-stopping techniques are applied to the training process. A trial-and-error procedure is implemented to determine suitable parameters of the network such as the number of hidden layers and the number of neurons in each layer. The accuracy and capability of the proposed DFNN model are illustrated through two distinct configurations of the CNT-fibers constituting the FG-CNTRC plates including uniform distribution (UD) and functionally graded-V distribution (FG-VD). Furthermore, the performance and stability of the DFNN model with the consideration of noise effects on the input data are also investigated. Obtained results indicate that the proposed DFNN model is able to give sufficiently accurate damage detection outcomes for the FG-CNTRC plates for both cases of noise-free and noise-influenced data.

关键词: damage detection     deep feed-forward neural networks     functionally graded carbon nanotube-reinforced composite plates     modal kinetic energy    

Nonlinear dynamic analysis of functionally graded carbon nanotube-reinforced composite plates using MISQ20

《结构与土木工程前沿(英文)》   页码 1072-1085 doi: 10.1007/s11709-023-0951-4

摘要: The main objective of this study is to further extend the mixed integration smoothed quadrilateral element with 20 unknowns of displacement (MISQ20) to investigate the nonlinear dynamic responses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates with four types of carbon nanotube distributions. The smooth finite element method is used to enhance the accuracy of the Q4 element and avoid shear locking without using any shear correction factors. This method yields accurate results even if the element exhibits a concave quadrilateral shape and reduces the error when the element meshing is rough. Additionally, the element stiffness matrix is established by integrating the boundary of the smoothing domains. The motion equation of the FG-CNTRC plates is solved by adapting the Newmark method combined with the Newton–Raphson algorithm. Subsequently, the calculation program is coded in the MATLAB software and verified by comparing it with other published solutions. Finally, the effects of the input parameters on the nonlinear vibration of the plates are investigated.

关键词: carbon nanotube     MISQ20     FG-CNTRC plate     nonlinear vibration     nonlinear dynamic analysis     SFEM    

Axisymmetric loading on nanoscale multilayered media

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 152-164 doi: 10.1007/s11709-022-0895-0

摘要: Multilayered nanoscale structures are used in several applications. Because the effect of surface energy becomes nontrivial at such a small scale, a modified continuum theory is required to accurately predict their mechanical behaviors. A Gurtin–Murdoch continuum model of surface elasticity is implemented to establish a computational scheme for investigating an elastic multilayered system under axisymmetric loads with the incorporation of surface/interface energy. Each layer stiffness matrix is derived based on the general solutions of stresses and displacements obtained in the form of the Hankel integral transform. Numerical solutions to the global equation, which are formulated based on the continuity conditions of tractions and displacements across interfaces between layers, yield the displacements at each layer interface and on the top surface of the multilayered medium. The numerical solutions indicate that the elastic responses of multilayered structures are affected significantly by the surface material properties of both the top surface and interfaces, and that they become size dependent. In addition, the indentation problem of a multilayered nanoscale elastic medium under a rigid frictionless cylindrical punch is investigated to demonstrate the application of the proposed solution scheme.

关键词: functionally graded layer     Gurtin–Murdoch surface elasticity     multilayered medium     size dependency     stiffness matrix    

Application of granular solid hydrodynamics to a well-graded unbound granular material undergoing triaxial

Shixiong SONG, Qicheng SUN, Feng JIN, Chuhan ZHANG

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 83-88 doi: 10.1007/s11709-012-0148-8

摘要: Unbound granular materials (UGMs) are widely used as a base or a subbase in pavement construction. They are generally well graded and exhibit a higher peak strength than that of conventional cohesionless granular materials. By using a simplified version of granular solid hydrodynamics (GSH), a set of GSH material constants is determined for a UGM material. The deviatoric stress and volumetric strain caused by triaxial compression are calculated and then compared with experimental data. The results indicate that the GSH theory is able to describe such a special type of granular materials.

关键词: granular solid hydrodynamics     unbound granular material (UGM)     triaxial tests    

Yue’s solution of classical elasticity in

Zhong-qi Quentin YUE

《结构与土木工程前沿(英文)》 2015年 第9卷 第3期   页码 215-249 doi: 10.1007/s11709-015-0298-6

摘要: This paper presents the exact and complete fundamental singular solutions for the boundary value problem of a -layered elastic solid of either transverse isotropy or isotropy subject to body force vector at the interior of the solid. The layer number is an arbitrary nonnegative integer. The mathematical theory of linear elasticity is one of the most classical field theories in mechanics and physics. It was developed and established by many well-known scientists and mathematicians over 200 years from 1638 to 1838. For more than 150 years from 1838 to present, one of the remaining key tasks in classical elasticity has been the mathematical derivation and formulation of exact solutions for various boundary value problems of interesting in science and engineering. However, exact solutions and/or fundamental singular solutions in closed form are still very limited in literature. The boundary-value problems of classical elasticity in -layered and graded solids are also one of the classical problems challenging many researchers. Since 1984, the author has analytically and rigorously examined the solutions of such classical problems using the classical mathematical tools such as Fourier integral transforms. In particular, he has derived the exact and complete fundamental singular solutions for elasticity of either isotropic or transversely isotropic layered solids subject to concentrated loadings. The solutions in -layered or graded solids can be calculated with any controlled accuracy in association with classical numerical integration techniques. Findings of this solution formulation are further used in the companion paper for mathematical verification of the solutions and further applications for exact and complete solutions of other problems in elasticity, elastodynamics, poroelasticty and thermoelasticity. The mathematical formulations and solutions have been named by other researchers as Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution.

关键词: elasticity     solution     layered solid     graded material    

Analytical solution for SH wave propagating through a graded plate of metamaterial

Jinfeng ZHAO, Yongdong PAN, Zheng ZHONG

《机械工程前沿(英文)》 2011年 第6卷 第3期   页码 301-307 doi: 10.1007/s11465-011-0238-7

摘要:

A physical model for the shear horizontal (SH) wave propagating from left-handed material (LHM) through a graded or transition layer to right-handed material (RHM) has been proposed in this paper. After the comparison of the basic wave equations of the electromagnetic, longitudinal, and SH waves, it is found that they take similar differential form. The analytical solutions have been found for power law, hyperbolic, and polynomial profiles. Numerical waveforms of the amplitude and phase of the displacement are obtained for the corresponding profiles. It is found that the waveforms are symmetric for the power law and hyperbolic profiles, and that the waveform for the polynomial profile is shifted and non-symmetric. The shift along with the anti-symmetric profile may provide a way to monitor the wave behavior of the metamaterials.

关键词: left-handed material (LHM)     metamaterial     shear horizontal (SH) wave    

Permeability analysis and seepage process study on crystal layer in melt crystallization with fractal and porous

Xiaobin JIANG, Baohong HOU, Yongli WANG, Jingkang WANG

《化学科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 435-441 doi: 10.1007/s11705-011-1139-3

摘要: In this paper a porous media seepage model was applied to analyze the permeability and study the seepage process of crystal pillar formed in the preparation of electronic grade phosphoric acid (EGPA). By inspecting the seeping process, the structure parameter of crystal pillar could be obtained. Two basic ideal models (perfectly separated model and perfectly connected model) were presented and a characterized factor was introduced to modify the model. A good simulation result was obtained which met the experiment result well. The relationship between and permeability were also discussed. The characterized factor showed potential application on optimizing process.

关键词: melt crystallization     porous media     fractal     permeability     hyperpure material     simulation    

冲击作用下多孔材料热力学特征的模拟与分析

许爱国,张广财,蔚喜军,潘小飞,朱建士

《中国工程科学》 2009年 第11卷 第9期   页码 13-19

摘要:

强冲击波的作用可在多孔材料中诱发复杂的时空耗散过程,在这期间系统整体处于远离平衡的状态,对这一过程的稳定模拟和结果分析均具有较强的挑战性。使用近期针对超高速碰撞而发展起来的物质点方法对这一过程进行模拟,引入积分几何和数值图像处理中的形态学描述来处理和分析系统热力学特征量例如温度的Turing斑图, 揭示出3个Minkowski泛函(白色区域相对面积、边界总长度、欧拉特征量)与系统中“高温区”所占份额、“热点”在空间的分布方式之间的对应,揭示出Minkowski泛函演化特征与冲击波及多孔材料相互作用过程之间的对应。研究了孔隙度和冲击波强度对物质状态参量的影响。

关键词: 冲击波     多孔材料     物质点法     形态学量度    

Iterative finite element model of nonlinear viscoplastic analyses for blended granular porous media

WU Yuching, ZHU Cimian

《结构与土木工程前沿(英文)》 2007年 第1卷 第4期   页码 464-473 doi: 10.1007/s11709-007-0063-6

摘要: The iterative finite element model, in which an element is used to represent a single particle, is generated to analyze the global behavior of multiple-material aggregates of materially nonlinear viscoplastic particles. The genera

关键词: nonlinear viscoplastic     iterative     behavior     multiple-material    

Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing

Huaiwei Shi, Teng Zhou

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 49-59 doi: 10.1007/s11705-020-1959-0

摘要: Functional materials are widely used in chemical industry in order to reduce the process cost while simultaneously increase the product quality. Considering their significant effects, systematic methods for the optimal selection and design of materials are essential. The conventional synthesis-and-test method for materials development is inefficient and costly. Additionally, the performance of the resulting materials is usually limited by the designer’s expertise. During the past few decades, computational methods have been significantly developed and they now become a very important tool for the optimal design of functional materials for various chemical processes. This article selectively focuses on two important process functional materials, namely heterogeneous catalyst and gas separation agent. Theoretical methods and representative works for computational screening and design of these materials are reviewed.

关键词: heterogeneous catalyst     gas separation     solvent     porous adsorbent     material screening and design    

Implicit Heaviside filter with high continuity based on suitably graded THB splines

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 14-14 doi: 10.1007/s11465-021-0670-2

摘要: The variable density topology optimization (TO) method has been applied to various engineering fields because it can effectively and efficiently generate the conceptual design for engineering structures. However, it suffers from the problem of low continuity resulting from the discreteness of both design variables and explicit Heaviside filter. In this paper, an implicit Heaviside filter with high continuity is introduced to generate black and white designs for TO where the design space is parameterized by suitably graded truncated hierarchical B-splines (THB). In this approach, the fixed analysis mesh of isogeometric analysis is decoupled from the design mesh, whose adaptivity is implemented by truncated hierarchical B-spline subjected to an admissible requirement. Through the intrinsic local support and high continuity of THB basis, an implicit adaptively adjusted Heaviside filter is obtained to remove the checkboard patterns and generate black and white designs. Threefold advantages are attained in the proposed filter: a) The connection between analysis mesh and adaptive design mesh is easily established compared with the traditional adaptive TO method using nodal density; b) the efficiency in updating design variables is remarkably improved than the traditional implicit sensitivity filter based on B-splines under successive global refinement; and c) the generated black and white designs are preliminarily compatible with current commercial computer aided design system. Several numerical examples are used to verify the effectiveness of the proposed implicit Heaviside filter in compliance and compliant mechanism as well as heat conduction TO problems.

关键词: topology optimization     truncated hierarchical B-spline     isogeometric analysis     black and white designs     Heaviside filter    

标题 作者 时间 类型 操作

Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro–thermo–magnetic

期刊论文

Static and dynamic analysis of functionally graded fluid-infiltrated porous skew and elliptical nanoplates

期刊论文

A novel finite element formulation for static bending analysis of functionally graded porous sandwich

Van Chinh NGUYEN; Trung Thanh TRAN; Trung NGUYEN-THOI; Quoc-Hoa PHAM

期刊论文

Manufacturing technique and performance of functionally graded concrete segment in shield tunnel

Baoguo MA, Dinghua ZOU, Li XU

期刊论文

A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced

期刊论文

Nonlinear dynamic analysis of functionally graded carbon nanotube-reinforced composite plates using MISQ20

期刊论文

Axisymmetric loading on nanoscale multilayered media

期刊论文

Application of granular solid hydrodynamics to a well-graded unbound granular material undergoing triaxial

Shixiong SONG, Qicheng SUN, Feng JIN, Chuhan ZHANG

期刊论文

Yue’s solution of classical elasticity in

Zhong-qi Quentin YUE

期刊论文

Analytical solution for SH wave propagating through a graded plate of metamaterial

Jinfeng ZHAO, Yongdong PAN, Zheng ZHONG

期刊论文

Permeability analysis and seepage process study on crystal layer in melt crystallization with fractal and porous

Xiaobin JIANG, Baohong HOU, Yongli WANG, Jingkang WANG

期刊论文

冲击作用下多孔材料热力学特征的模拟与分析

许爱国,张广财,蔚喜军,潘小飞,朱建士

期刊论文

Iterative finite element model of nonlinear viscoplastic analyses for blended granular porous media

WU Yuching, ZHU Cimian

期刊论文

Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing

Huaiwei Shi, Teng Zhou

期刊论文

Implicit Heaviside filter with high continuity based on suitably graded THB splines

期刊论文